Discrimination of retinal images containing bright lesions using sparse coded features and SVM

نویسندگان

  • Desire Sidibé
  • Ibrahim Sadek
  • Fabrice Mériaudeau
چکیده

Diabetic Retinopathy (DR) is a chronic progressive disease of the retinal microvasculature which is among the major causes of vision loss in the world. The diagnosis of DR is based on the detection of retinal lesions such as microaneurysms, exudates and drusen in retinal images acquired by a fundus camera. However, bright lesions such as exudates and drusen share similar appearances while being signs of different diseases. Therefore, discriminating between different types of lesions is of interest for improving screening performances. In this paper, we propose to use sparse coding techniques for retinal images classification. In particular, we are interested in discriminating between retinal images containing either exudates or drusen, and normal images free of lesions. Extensive experiments show that dictionary learning techniques can capture strong structures of retinal images and produce discriminant descriptors for classification. In particular, using a linear SVM with the obtained sparse coded features, the proposed method achieves superior performance as compared with the popular Bag-of-Visual-Word approach for image classification. Experiments with a dataset of 828 retinal images collected from various sources show that the proposed approach provides excellent discrimination results for normal, drusen and exudates images. It achieves a sensitivity and a specificity of 96.50% and 97.70% for the normal class; 99.10% and 100% for the drusen class; and 97.40% and 98.20% for the exudates class with a medium size dictionary of 100 atoms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Exudate Detection in Retinal Images using PCA-based Optic Disc Removal

Diabetic retinopathy lesion detection such as exudate in fundus image of retina can lead to early diagnosis of the disease. Retinal image includes dark areas such as main blood vessels and retinal tissue and also bright areas such as optic disk, optical fibers and lesions e.g. exudate. In this paper, a multistage algorithm for the detection of exudate in foreground is proposed. The algorithm se...

متن کامل

M Madheswaran and S Jerald Jeba Kumar: an Improved Medical Decision Support System to Grading the Diabetic Retinopathy Using Fundus Images

An improved Computer Aided Clinical Decision Support System has been developed for grading the retinal images using neural network and presented in this paper. Hard exudates, Cotton wool spots, large plaque hard exudates, Microaneurysms and Hemorrhages have been extracted. SVM classifiers have been used for classification. Further rule based classifiers have been used to grade the retinal image...

متن کامل

Bright Retinal Lesions Detection using Colour Fundus Images Containing Reflective Features

In the last years the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is worryingly increasing among the young population. Ret...

متن کامل

Bright Retinal Lesions Detection using Color Fundus Images Containing Reflective Features

Recently, the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is increasing among the young population. Retina fundus images o...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2015